深度学习笔记(3)

发布于 2022-07-31  626 次阅读


mnist数据集是图像分类的“hello world”,paddle这一章的教程使用极简方式完成识别模型的搭建,详见通过极简方案构建手写数字识别模型,然后我也会用pytorch同样以极简方式完成模型地搭建以进行对比学习。教程的下一章是手写模型,包括数据读取,网络结构和训练过程,到时候也会重写pytorch版本进行对比。

#加载飞桨和相关类库
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Linear
import numpy as np
import os
from PIL import Image

通过paddle本身的api下载数据集

# 如果~/.cache/paddle/dataset/mnist/目录下没有MNIST数据,API会自动将MINST数据下载到该文件夹下
# 设置数据读取器,读取MNIST数据训练集
trainset = paddle.dataset.mnist.train()
# 包装数据读取器,每次读取的数据数量设置为batch_size=8
train_reader = paddle.batch(trainset, batch_size=8)
train_reader()//返回一个批次的数据

之后用迭代的方法读取数据,迭代器,函数中的yield会在下一章具体探讨一下。

# 以迭代的形式读取数据
for batch_id, data in enumerate(train_reader()):
    # 获得图像数据,并转为float32类型的数组
    img_data = np.array([x[0] for x in data]).astype('float32')
    # 获得图像标签数据,并转为float32类型的数组
    label_data = np.array([x[1] for x in data]).astype('float32')
    # 打印数据形状
    print("图像数据形状和对应数据为:", img_data.shape, img_data[0])
    print("图像标签形状和对应数据为:", label_data.shape, label_data[0])
    break

print("\n打印第一个batch的第一个图像,对应标签数字为{}".format(label_data[0]))
# 显示第一batch的第一个图像
import matplotlib.pyplot as plt
img = np.array(img_data[0]+1)*127.5
img = np.reshape(img, [28, 28]).astype(np.uint8)

plt.figure("Image") # 图像窗口名称
plt.imshow(img)
plt.axis('on') # 关掉坐标轴为 off
plt.title('image') # 图像题目
plt.show()

# 获得图像数据,并转为float32类型的数组 img_data = np.array([x[0] for x in data]).astype('float32') # 获得图像标签数据,并转为float32类型的数组 label_data = np.array([x[1] for x in data]).astype('float32')

这两句写的很干练,迭代器返回的是八张图片一组的list,list里每一个元素又是一个标签和一个存储图像的一维list,这样就分别存储成了标签的一维数组(8,)和图像的数组(8,784)。

接下来建立模型类,这里就用最简单的单层线性网络,可想而知效果会很差,但网络结构不是这一章的重点。

# 定义mnist数据识别网络结构,同房价预测网络
class MNIST(fluid.dygraph.Layer):
    def __init__(self):
        super(MNIST, self).__init__()
        
        # 定义一层全连接层,输出维度是1,激活函数为None,即不使用激活函数
        self.fc = Linear(input_dim=784, output_dim=1, act=None)
        
    # 定义网络结构的前向计算过程
    def forward(self, inputs):
        outputs = self.fc(inputs)
        return outputs

之后设置动态图模式

# 定义飞桨动态图工作环境
with fluid.dygraph.guard():
    # 声明网络结构
    model = MNIST()
    # 启动训练模式
    model.train()
    # 定义数据读取函数,数据读取batch_size设置为16
    train_loader = paddle.batch(paddle.dataset.mnist.train(), batch_size=16)
    # 定义优化器,使用随机梯度下降SGD优化器,学习率设置为0.001
    optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001, parameter_list=model.parameters())

接着定义训练过程

# 通过with语句创建一个dygraph运行的context
# 动态图下的一些操作需要在guard下进行
with fluid.dygraph.guard():
    model = MNIST()
    model.train()
    train_loader = paddle.batch(paddle.dataset.mnist.train(), batch_size=16)
    optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.001, parameter_list=model.parameters())
    EPOCH_NUM = 10
    for epoch_id in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            #准备数据,格式需要转换成符合框架要求
            image_data = np.array([x[0] for x in data]).astype('float32')
            label_data = np.array([x[1] for x in data]).astype('float32').reshape(-1, 1)
            # 将数据转为飞桨动态图格式
            image = fluid.dygraph.to_variable(image_data)
            label = fluid.dygraph.to_variable(label_data)
            
            #前向计算的过程
            predict = model(image)
            
            #计算损失,取一个批次样本损失的平均值
            loss = fluid.layers.square_error_cost(predict, label)
            avg_loss = fluid.layers.mean(loss)
            
            #每训练了1000批次的数据,打印下当前Loss的情况
            if batch_id !=0 and batch_id  % 1000 == 0:
                print("epoch: {}, batch: {}, loss is: {}".format(epoch_id, batch_id, avg_loss.numpy()))
            
            #后向传播,更新参数的过程
            avg_loss.backward()
            optimizer.minimize(avg_loss)
            model.clear_gradients()

    # 保存模型
    fluid.save_dygraph(model.state_dict(), 'mnist')

模型测试

# 导入图像读取第三方库
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import cv2
import numpy as np
# 读取图像
img1 = cv2.imread('./work/example_0.png')
example = mpimg.imread('./work/example_0.png')
# 显示图像
plt.imshow(example)
plt.show()
im = Image.open('./work/example_0.png').convert('L')
print(np.array(im).shape)
im = im.resize((28, 28), Image.ANTIALIAS)
plt.imshow(im)
plt.show()
print(np.array(im).shape)
# 读取一张本地的样例图片,转变成模型输入的格式
def load_image(img_path):
    # 从img_path中读取图像,并转为灰度图
    im = Image.open(img_path).convert('L')
    print(np.array(im))
    im = im.resize((28, 28), Image.ANTIALIAS)
    im = np.array(im).reshape(1, -1).astype(np.float32)
    # 图像归一化,保持和数据集的数据范围一致
    im = 1 - im / 127.5
    return im

# 定义预测过程
with fluid.dygraph.guard():
    model = MNIST()
    params_file_path = 'mnist'
    img_path = './work/example_0.png'
# 加载模型参数
    model_dict, _ = fluid.load_dygraph("mnist")
    model.load_dict(model_dict)
# 灌入数据
    model.eval()
    tensor_img = load_image(img_path)
    result = model(fluid.dygraph.to_variable(tensor_img))
#  预测输出取整,即为预测的数字,打印结果
    print("本次预测的数字是", result.numpy().astype('int32'))

接下来看看pytorch的版本怎么写

#导入相关库
import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
import torchvision

#定义数据读取函数
def get_dataloader(train=True):
    assert isinstance(train,bool),"train 必须是bool类型"

    #准备数据集,其中0.1307,0.3081为MNIST数据的均值和标准差,这样操作能够对其进行标准化
    #因为MNIST只有一个通道(黑白图片),所以元组中只有一个值
    dataset = torchvision.datasets.MNIST(r"E:\NLPDATA", train=train, download=True,
                                         transform=torchvision.transforms.Compose([
                                         torchvision.transforms.ToTensor(),
                                         torchvision.transforms.Normalize((0.1307,), (0.3081,)),]))
    #准备数据迭代器
    batch_size = train_batch_size if train else test_batch_size
    dataloader = torch.utils.data.DataLoader(dataset,batch_size=batch_size,shuffle=True)
    return dataloader

#定义网络结构
class MnistNet(nn.Module):
    def __init__(self):
        super(MnistNet,self).__init__()
        self.fc1 = nn.Linear(28*28*1,1)

    def forward(self,x):
        x = x.view(-1,28*28*1)
        x = self.fc1(x)
        return x

train_batch_size = 8
test_batch_size = 1000
img_size = 28
mnist_net = MnistNet()
optimizer = optim.Adam(mnist_net.parameters(),lr= 0.001)
criterion = nn.MSELoss()
train_loss_list = []
train_count_list = []
def train(epoch):
    mode = True
    mnist_net.train(mode=mode)
    train_dataloader = get_dataloader(train=mode)
    print(len(train_dataloader.dataset))
    print(len(train_dataloader))
    for idx,(data,target) in enumerate(train_dataloader):
        optimizer.zero_grad()
        output = mnist_net(data)
        output=output.to(torch.float32)
        target=target.to(torch.float32)
        loss = criterion(output,target)
        loss.backward()
        optimizer.step()
        if idx % 1000 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, idx * len(data), len(train_dataloader.dataset),
                       100. * idx / len(train_dataloader), loss.item()))

            train_loss_list.append(loss.item())
            train_count_list.append(idx*train_batch_size+(epoch-1)*len(train_dataloader))

def test():
    test_loss = 0
    correct = 0
    mnist_net.eval()
    test_dataloader = get_dataloader(train=False)
    with torch.no_grad():
        for data, target in test_dataloader:
            output = mnist_net(data)
            output=output.to(torch.float32)
            target=target.to(torch.float32)
            test_loss += criterion(output, target)
            pred = output.round()
            correct += pred.eq(target.data.view_as(pred)).sum()
    test_loss /= len(test_dataloader.dataset)
    print('\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
        test_loss, correct, len(test_dataloader.dataset),
        100. * correct / len(test_dataloader.dataset)))

同样的pytorch也有api包含了这些常用数据集的dataloader,但这章只是描述了一下极简的模型搭建方法,重点还是在后面的手动编写数据读取处理过程,手工搭建模型网络,手工编写训练测试过程,以达到完全清楚可控。毕竟实际做项目时数据集都是自己的,也要从头开始写完整过程。

届ける言葉を今は育ててる
最后更新于 2022-07-31